
Multiple beats of weakly confined excitons with inverted selection rule

Hideki Yasuda and Hajime Ishihara*
Department of Physics and Electronics, Osaka Prefecture University, Sakai 599-8531, Japan

�Received 16 February 2009; published 18 May 2009�

The phenomenon of multiple beats �MBs� arising from nondipole-type excitons weakly confined in a thin
film is theoretically elucidated using a nonlocal transient-response theory. Kojima et al. previously demon-
strated for a GaAs thin film that the degenerate four-wave mixing signals from the quantized levels of the
center-of-mass motion of excitons exhibit complex interference between beats under femtosecond-order pulse
incidence �Kojima et al., J. Phys. Soc. Jpn. 77, 044701 �2008��. This leads to an ultrafast optical response on
the order of femtoseconds. This effect occurs in a size region beyond the long-wavelength approximation
regime due to the resonant enhancement of the internal field, wherein the usual dipole selection rule is violated.
Our analysis of MBs employs a model of the nonlocal multilevel system that considers the spatial interplay
between excitonic waves and the radiation field to elucidate the mechanism behind the observed ultrafast
response.
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The combination of ultrafast laser techniques and nano-
fabrication technology has opened new possibilities for high-
performance control over nonlinear optical response. This
can be achieved through the interference of induced polar-
izations from multiple quantized levels. Coherent interfer-
ence phenomena, i.e., beating effects have been observed in
various systems, e.g., the interference between heavy and
light hole excitons,1 upper and lower polaritons,2 and con-
fined excitons in quantum wells.3 In addition, the control of
the dynamics of the response signal using this interference
has been demonstrated. In particular, this method allows con-
siderable control over signal decay allowing the possibility
for high-speed signal processing.

Recently, peculiar size-dependent nonlinearity for exci-
tons with center-of-mass �c.m.� confinement has been ob-
served, which further increases the number of degrees of
freedom that can be used to control optical response. Moti-
vated by the theoretical proposal,4 it was demonstrated that a
large nonlinearity results from the size-resonant enhance-
ment of the internal field for the size region beyond long-
wavelength approximation �LWA�,5,6 wherein the usual di-
pole selection rule is violated and the nondipole-type states
of the excitonic c.m. motion significantly contribute to the
optical response. By using this type of nonlinear process,
more recently, femtosecond-order response has been demon-
strated by the simultaneous excitation of multiple c.m. exci-
tonic levels with a spectrally broad incident pulse,7 where the
multiple beats �MBs� between the different c.m. levels gen-
erated by degenerate four-wave mixing �DFWM� strongly
affects the time profile of the response signal. The superpo-
sition of these MBs has been attributed to a significant short-
ening of the response signal. This mechanism has potential in
ultrafast signal processing because of the considerably large
nonlinearity created by the resonant field enhancement and
also because of the high level of controllability over the ex-
citonic level scheme allowed by appropriate nanostructure
design. However, this has not been fully explored because of
the difficulties involved in analyzing the transient response
in the non-LWA regime, where the microscopic spatial inter-
play between excitonic and radiation waves plays a key role.
In this Brief Report, therefore, we theoretically elucidate the

dynamics of the MBs of a c.m.-confined excitonic system in
the non-LWA regime. Especially, we present an analysis of
the experimental results in Ref. 7 employing a nonlocal
transient-response theory developed by us.

Figure 1�a� shows a schematic picture of the sample used
in Ref. 7 with double heterostructures consisting of three
GaAs layers with a thickness of about X=110 nm. Among
the three active layers, the topmost, having the highest qual-
ity, provides the dominant response signal.6 Therefore, in our
calculation, we simplify the model as shown in Fig. 1�b�,
namely, we consider a single layer corresponding to the top-
most as an excitonic active layer and the other part of the
sample is treated as a material with only the background
dielectric constant �b of GaAs. The difference in background
dielectric constant between GaAs and AlGaAs is not essen-
tial in the present study.

As a model for excitons, we consider the excitonic c.m.
motion being confined in a thin layer with its thickness di-
rected along the z axis. Since the excitonic Bohr radius is
large for GaAs �14 nm�, the distortion of the c.m. wave func-
tion should be considered in the form of a dead-layer model8

or transition-layer model.9 In the present study, this effect is
considered as a change in effective thickness and we explic-
itly treat only the degree of freedom of c.m. motion. Within

FIG. 1. �a� Experimental sample consisting of three GaAs lay-
ers. �b� Theoretical model of a sample. The wavy lines represent the
excitonic c.m. wave functions.
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the subspace of a given wave vector parallel to the film sur-
face, K�, we consider the following eigenfunctions and
eigenenergies as the basis of the c.m. motion of excitons
along the z axis: �n�z�= �2 /d�1/2sin Knz and En=�2�Kn

2

+K�
2� /2M, where d is the active-layer thickness, M is the

effective mass of the exciton, and Kn is the quantized wave
number perpendicular to the film surface and whose quanti-
zation condition is given as Kn=n� /d for a positive integer
n.

In the calculation of the linear response, we consider the
nonlocal relationship between the induced polarization P�z�
and the electric field E�z� along with the method in Ref. 10.
The induced polarization can be expanded as P�z�
=�nXn����n�z� with the bases of excitonic c.m. motion.10

The spectrum of the expansion coefficient �Xn����2 includes
information on the radiative shift and width of the nth exci-
tonic state.

As for the origins of this nonlinearity, we consider in-
volvement of the state filling due to Pauli’s exclusion effect
and the exciton-exciton interaction. Discretizing the medium
and assuming one-dimensional transfer reduced from the ef-
fective mass M, we introduced an attractive interaction be-
tween the excitons at neighboring sites, which yields a biexi-
cton and free two-exciton states. In the considered effect,
however, the contributions from the two-exciton states are
not significant and actually, their explicit effects are not
found in the basic results of the experiment. Therefore, in the
present study, we focus on the effects of one-exciton reso-
nance due to the state filling.

To calculate the DFWM signal, we use the Runge-Kutta
method to numerically solve as functions of time t the simul-
taneous equations of motion of the density matrix

�̇mn =
i

�
�	m − 	n��mn − 
mn�mn

+
i

c���
l
	�lm
 �n�Ĵ�z��l�A�z,t�dz

− �nl
 �l�Ĵ�z��m�A�z,t�dz� �1�

and the standard Maxwell equation to describe the vector
potential A�z , t�, written in the Coulomb gauge. In the above
expression, �	n� denotes the eigenenergies of the states ��n��,
and 
mn is the phenomenologically introduced nonradiative
damping constant. The Maxwell equation includes the source
current density j�z , t�, which is the quantum-mechanical av-

erage of the current-density operator Ĵ�z�, that is, j�z , t�
=�nm�mn�n�Ĵ�r��m�. In this calculation, we do not neglect the
microscopic position dependence of A�z , t� and j�z , t� to
properly include the contributions from the higher order
�n�2� of excitonic states beyond the LWA regime. From the
solution of A�z , t� obtained by assuming negligibly small K�,
we extract the component of the DFWM signal correspond-
ing to the observed signal by the numerical technique. Fur-
ther, Fourier transformation of the calculated signals affords
the DFWM spectrum. Because of the self-consistent treat-
ment of A�z , t��E�z , t�� and j�z , t��P�z , t�� in the above calcu-

lations, the size-dependent radiative correction �shift and
width� or radiative decay-time profile automatically appears
in the result. Note that the only fitting parameters in the
present calculation are d and 
.

Figure 2�a� shows the DFWM spectrum experimentally
observed by a �Gaussian-shaped� pulse excitation with a du-
ration of 170 fs and with no delay between the pump and the
probe pulses.7 Also shown is the calculated DFWM spectrum
and those of the components of the polarization induced by
the individual c.m. states �Xn����2 in Figs. 2�b� and 2�c�,
respectively. We find that the peak energy of each component
of the observed DFWM spectrum is in good accordance with
that of �Xn����2. In the present sample, the peak at n=1 al-
most overlaps that at n=2, which is due to the large radiative
shift at n=1. In this fitting, we find that the signal intensities
from the excitonic states with even parity �n=2,4 ,6 , . . .� are
prominent while those from the excitonic states with odd
parity are weak except for that at n=1. This inversion of
selection rule is principally due to the nanoscale spatial
structure of the internal field. Further, this spectral shape is
very sensitive to the nonradiative damping constants of
the respective c.m. states. In this fitting, we chose the follow-
ing combination: 
10=0.6 meV, 
k0=0.1 meV �k
=2,3 , . . . ,N�. It should be noted that 
10 is considerably
large; this enhances the character of the inverted selection
rule in this sample.

The experimentally observed DFWM intensities are plot-
ted as functions of delay time7 in Fig. 3. For this measure-
ment, a series of the square-shaped pulses were generated by
a pulse-processing system composed of a slit and grating
pair, which allowed the selection of a particular group of
c.m. states that would be excited. In Fig. 3�a�, the spectral
width of square-shaped pulse �E is gradually widened while
in Fig. 3�b�, each square-shaped pulse had a constant spectral
width of �E=5.4 meV and its center energy was finely ad-
justed to increase, one by one, the number of involved exci-

FIG. 2. �a� Observed DFWM spectrum in a GaAs thin film. �b�
DFWM spectrum obtained by Fourier transformation of the signal
calculated by the real time analysis. �c� Calculated induced polar-
ization spectra. The nonradiative damping constants are assumed to
be 
10=0.6 meV, 
k0=0.1 meV �k=2,3 , . . . ,N�.
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tonic states within the square-shaped pulses.7 The involved
states are indicated for each curve. We observe two charac-
teristic behaviors through these figures. One is the shortening
of the response pulse with an increase in the spectral pulse
width �Fig. 3�a�� and the other is the discrete change in the
oscillatory structure to a sharp, more undulating shape with
an increasing number of included excitonic states �Fig. 3�b��.
These characteristic behaviors are explained qualitatively in
terms of the superposition of MBs in Ref. 7. However, a full
understanding of the origin of these effects should be ob-
tained from microscopic theory to reproduce the signals from
the nonlocal response system.

Before discussing the decay behavior of the DFWM sig-
nals using a full nonlocal calculation, we examined how the
superposition of MBs contributing to the shortening of the
response signal by using a simple analytical calculation.
With use of the perturbative expansion and the rotating-wave
approximations, we derive the expression of the output pulse
energy for DFWM from Eq. �1� by extending the method of
Yajima and Taira11 for the two-level system to the N-level
nonlocal system. The incident pulse is assumed to be of
delta-function type to perform an analytical calculation. We
obtain

JDFWM
�3� �� =

1

2�
k=1

N
�


k0
�J�k�2e−2
k0/�

+ �
k���k�=1

N

I�k,k��2e−2
k�0/�

+ 2J�k� �
k���k�=1

N

I�k,k��e−�
k�0/�+
k0/�+i�kk��� ,

�2�

where ��0� is the delay time between the pump and the
probe pulses, �k�k=	k� /�−	k /�, and J�k� and I�k ,k�� include
overlap integrals between the light wave and the respective
excitonic waves. The third term on the right-hand side �RHS�

of Eq. �2� represents the multiple interference among the N
excitonic states through the third-order interaction.

Taking the term for k=1 in the square bracket on the RHS
of Eq. �2� because of symmetry, we obtain

M�� = e−2
10/� + �
k=2

N

e−2
k0/� + 2�
k=2

N

e−�
10/�+
k0/�+i�1k�,

�3�

where we take J�k�= I�k ,k��=1 for the simplified demonstra-
tion.

Further, for simplicity, we assume a constant energy spac-
ing between the neighboring states, �E, that is, ��1k�
=�E1k�= �k�−1��E �k�=2,3 , . . .�. In this case, the third term
on the RHS can be rewritten as

sin Nx

sin x
cos�N − 1�x − 1 �x =

�E

2�
� �4�

if we assume the damping constants to be zero.
Figure 4�a� shows some examples of the function M�x�

for N=2–5. As seen in this figure, the shortening of the
response signal can be attributed to the superposition of
MBs, as explained in Ref. 7. Similar shortening due to MBs
has been discussed for various multilevel systems.12,13 Fur-
thermore, if we assume finite damping constants and plot on
a logarithmic scale, a decay profile similar to that observed is
obtained along with similar discrete changes in the beat os-
cillation �Fig. 4�b��.

The above examination provides a basic insight into the
mechanism behind the observed phenomenon. However, the
real phenomenon is greatly affected by the incident pulse
shape and the damping constants. Thus, we now turn to the
results of the nonlocal transient-response calculation to gain
a full understanding of the phenomenon. Figure 5 shows the
calculated results, where both panels �a� and �b� match very
well with the results in Fig. 3. However, in this demonstra-
tion, we have made a special consideration on the damping
constants and the incident pulse shape. For the present fit-
ting, the damping constants increased when a higher excita-
tion energy was used �see caption to Fig. 5.� The slow decay
of curve A in Figs. 5�a� and 5�b� can be reproduced if we
assume a considerably small damping constant of at least

FIG. 3. �a� Observed DFWM intensities as functions of delay
time for different incident pulse widths. �b� Observed excitation-
energy dependence of DFWM signal �Ref. 7�.

FIG. 4. Calculated examples of function M�x� for N=2–5. �a�

10 /�=
k0 /�=0. �b� 
10 /�=
k0 /�=1 �k=2�N�.
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that in the n=1 state. However, the short response signal and
beating behavior of curve F in Figs. 5�a� and 5�b�, respec-
tively, requires a large damping constant of at least that in the
n=1 state. But, if the damping constant in the n=1 state is as
small as that for curve A, the beating behavior cannot be
reproduced. The larger damping for the excitation of the
higher-energy region is reasonable because the larger com-

ponent of the band excitation introduces the higher carrier
density that causes the larger dephasing.14 Further, this beat-
ing behavior is not reproduced if we assume an even-
weighted excitation of all the involved c.m. levels. But clear
beating appears if we assume weaker excitation of the lower
state �n=1� by considering the distortion of the square-
shaped pulses on the lower-energy side.15 By observing the
above two elements, we understand that the experimentally
observed shortening of the response signal and the discrete
change in the beats with the excitation-energy range is due to
not only to MBs but also to the fast dephasing in the n=1
state, which enhances the character of the inverted selection
rule of the present system.

In summary, we investigated the effect of multiple inter-
ference in DFWM by c.m.-confined states. The observed dis-
crete transition of the oscillating behavior and shortening of
the response signal is accurately reproduced by our nonlocal
transient-response theory, where the interplay between the
excitonic and radiation waves is fully considered. The sce-
nario based on MBs proposed in Ref. 7 is elucidated by our
simple analysis. However, examination of the effects of the
damping constants of the respective c.m. states and the inci-
dent pulse shape revealed that the observed first response is
due to not only to MBs but also the fast dephasing in the n
=1 state caused by excitation to a higher-energy region,
which enhances the character of the inverted selection rule of
the present system.

The authors are grateful to T. Isu and O. Kojima for the
useful information on their experiments and for the fruitful
discussions.
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FIG. 5. �a� Calculated DFWM intensities as functions of delay
time for different incident pulse widths, and �b� excitation-energy
dependence of DFWM signals calculated by real time analysis. We
identify the beating structure of curves A and B for N=2 in Fig.
4�b�, C and D for N=3, and E and F for N=4. The assumed damp-
ing constants are for curves A, B, C, D, E, and F, respectively, are as
follows: �a� 0.15, 0.30, 0.40, 0.40, 0.40, and 0.60 meV; and �b� 0.10,
0.20, 0.30, 0.30, 0.35, and 0.40 meV.
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